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Abstract

The transient response of a transversely isotropic piezoelectric ceramic layer containing two surface cracks is

analyzed under the action of antiplane mechanical and inplane electric impacts. By using the Laplace transform

and the finite Fourier transform, the mixed initial-boundary-value problem is reduced to singular integral equations

of the first kind. The Lobatto–Chebyshev collocation technique is employed to solve numerically the resulting

singular integral equations, and dynamic field intensity factors and strain energy release rate are determined for

both permeable and impermeable cracks. Performing the inverse Laplace transform, numerical results are presented

graphically to show the effects of the geometric parameters, and the material properties on the dynamic strain

energy release rate. The dynamic interaction of two surface cracks, and cracks with free surfaces is discussed in

detail.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

As a class of smart materials, piezoelectric ceramics have been widely used in adaptive microelectro-

mechanical systems such as sensors, actuators, and transducers due to a strong coupling characteristic

between elastic and electric behaviors (Rao and Sunar, 1994; Uchino, 1998). Now, piezoelectric sensors,

actuators, and transducers of various configurations can be manufactured for specified functions (Tsou and

Bergman, 1998). For example, in signal processing applications, with the aid of excitation or reception of
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the surface acoustic waves, an interdigital transducer is a thin piezoelectric layer bonded perfectly on a

elastic substrate. And on the surface of the piezoelectric film, an array of electrodes is arranged according to

different patterns (Dieulesaint and Royer, 1980).

On the other hand, a disadvantage of piezoelectric ceramics is that they are very brittle and has low
strength, so they are susceptive to fracture. In recent years, the study of the reliability of piezoelectric

ceramics with defects has become an intensive subject of investigation (Suo et al., 1992; Yang, 2001). In

particular, since piezoelectric structures usually operate in environment relating to time-dependent

loadings, the dynamic response problem of mechanical and electrical behaviors in a cracked piezoelectric

ceramic under various time-dependent loadings is of great significance. Along this line, many efforts in

this field have been made in theory to analyze the responses of the electric and elastic fields disturbed by

cracks in a piezoelectric material subjected to dynamic electromechanical loadings. The dynamic Green�s
functions for anisotropic piezoelectric materials have been formulated by Narris (1994). The fundamental
solutions for dynamic piezoelectricity equations of piezoelectric materials have been derived by Khu-

toryansky and Sosa (1995), Sosa and Khutoryansky (2001). For a cracked piezoelectric material under the

action of time-dependent electromechanical loadings, Dascalu and Maugin (1995) studied the dynamic

problem of crack propagation in a self-similar manner in a piezoelectric material by the quasielectrostatic

approximation method. The dynamic electroelastic behavior of a piezoelectric material has been analyzed

for a semi-infinite moving crack subjected to impact loads by Li and Mataga (1996a,b) with the electrode

boundary condition and the vacuum boundary condition at the crack faces, respectively. For a semi-

infinite stationary crack in a piezoelectric material subjected to a concentrated electromechanical impact
at the crack faces, a closed-form solution has been derived for an impermeable crack by Li (2001).

Generally speaking, a crack in a piezoelectric material is commonly of finite length. In this case, elec-

troelastic field under electromechanical impacts acting on the crack faces, in particular the effect of electric

impact on elastic behavior, has been analyzed by Shindo et al. (1999) for mode-I crack, who determined

numerically the dynamic stress intensity factor and the dynamic energy release rate under the electrically

permeable assumption, and by Chen and Karihaloo (1999) for mode-III crack, who gave some numerical

results on the dynamic stress intensity factor for an impermeable crack. Some similar dynamic problems

in a piezoelectric strip containing transverse or longitudinal internal crack(s) have further been investi-
gated under the electrically permeable or impermeable assumption (Chen and Meguid, 2000; Wang and

Yu, 2000; Meguid and Chen, 2001; Shin et al., 2001; Gu et al., 2002; Li and Fan, 2002; Li and Tang,

2003).

For multiple mode-III cracks in a non-homogeneous smart laminate material, the dynamic analysis has

been proposed via integral transform approaches by Wang et al. (1998), Wang and Noda (2001). Recently,

Meguid and Zhao (2002) considered antiplane shear crack situated at the interface a piezoelectric strip

bonded to an elastic half-space subjected to dynamic impacts, and studied electroelastic response under

permeable and impermeable assumptions. They found that electric-displacement intensity factors for an
impermeable crack exhibit a transient feature, and depend on time, which is contrast to the existing results.

However, it should be pointed out that this conclusion is based on the adopted boundary conditions at the

surfaces of the crack, which are different from the previous.

This paper is concerned with the transient problem of a piezoelectric layer with two surface cracks

subjected to sudden electromechanical impact. The dynamic interaction of two surface cracks is analyzed

for the case of antiplane mechanical and inplane electric excitations. The Laplace transform and the finite

Fourier transform are employed to reduce the mixed initial-boundary-value problem to singular integral

equations with Cauchy kernel of the first kind. Based on the Lobatto–Chebyshev collocation quadrature
technique, the resulting singular integral equations are solved numerically. The dynamic strain energy re-

lease rate (SERR) is obtained both for permeable and impermeable cracks by a numerical inversion of the

Laplace transform. The effects of the geometric parameters and the material properties are examined in

detail.
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2. Statement of the problem

For a typical actuator composed of a thin piezoelectric ceramic layer, it is assumed that the piezoelectric

layer is transversely isotropic. The problem to be considered is depicted in Fig. 1, where Cartesian coor-
dinates x; y; z are the principal axes of the material symmetry while the z-axis is oriented in the poling

direction of the piezoelectric ceramic, which is not depicted in Fig. 1. The thickness of the piezoelectric

ceramic layer is assumed to be h, and two surface cracks of equal length and spaced by distance d occupy

the regions 06 x6 a, y ¼ �d=2, �1 < z < 1. For a piezoelectric actuator, an external electric field is

usually applied to parallel to the poling direction of the piezoelectric material, which gives rise to elastic

displacements parallel to and perpendicular to the poling axis. In other words, under such circumstances,

piezoelectric ceramics undergo expansion or shrinkage. However, a recent experiment by Mueller and

Zhang (1998) showed that shear strain response of piezoelectric ceramics under the action of an external
electric field perpendicular to the poling axis can be exploited to design new piezoelectric actuators. In the

following analysis, special attention is paid to the latter case.

From the viewpoint of fracture mechanics, of much significancy is the singular field near a crack tip.

Hence, in the present study we consider the case where sudden impacts are simultaneously exerted at the

crack faces. Within the framework of the theory of linear piezoelectricity, the constitutive equations in the

piezoelectric ceramic take the forms
rij ¼ cijklskl � ekijEk; Di ¼ eiklskl þ eikEk: ð1Þ
When subjected to sudden antiplane mechanical and inplane electric impacts, the piezoelectric ceramic layer

is in a state of longitudinal shear deformation. In this case, the antiplane deformation is coupled with the

inplane electric field, and the corresponding constitutive equations reduce to
szx ¼ cE44czx � e15Ex; szy ¼ cE44czy � e15Ey ; ð2Þ

Dx ¼ e15czx þ e11Ex; Dy ¼ e15czy þ e11Ey ; ð3Þ
where cE44, e11, and e15 are the elastic stiffness measured in a constant electric field, the dielectric permittivity

measured at a uniform strain, the piezoelectric constant, respectively, s, c;D, and E are stress, strain, electric

displacement, and electric field, respectively. Here strain and electric field can be determined in terms of the

out-of-plane displacement wðx; y; tÞ and inplane electric potential /ðx; y; tÞ, by the following gradient

relations
czx ¼ w;x; czy ¼ w;y ; ð4Þ

Ex ¼ �/;x; Ey ¼ �/;y ; ð5Þ
where the comma following a function denotes partial differentiation with respect to the suffix space

variable.

From the equation of motion and the equilibrium equation of charges, neglecting body forces and free

charges, it follows that wðx; y; tÞ and /ðx; y; tÞ satisfy the basic governing partial differential equations
x

y

ah

d

a

Fig. 1. Schematic of a piezoelectric ceramic layer with two surface cracks.
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cE44r2wþ e15r2/ ¼ q
o2w
ot2

; e15r2w� e11r2/ ¼ 0; ð6Þ
where q is the mass density of the piezoelectric ceramic, and r2 represents the two-dimensional Laplacian
operator.

The relevant mechanical and electric boundary conditions are given as follows. The layer boundary

surfaces are clearly free of stress and of electric displacement, which can be stated as below
szxð0; y; tÞ ¼ 0; szxðh; y; tÞ ¼ 0; �1 < y < 1; t > 0; ð7Þ

Dxð0; y; tÞ ¼ 0; Dxðh; y; tÞ ¼ 0; �1 < y < 1; t > 0: ð8Þ

Apart from the above boundary conditions at the layer surfaces, appropriate boundary conditions at the

crack faces must be furnished. For elastic part, obviously, we have
szyðx;�d=2; tÞ ¼ �s0fmðtÞ; 0 < x < a; t > 0; ð9Þ
where fmðtÞ ¼ 0 as t6 0, and s0 is a prescribed constant. However, there are some controversial arguments

for electric boundary conditions at the crack faces, one opinion assuming that the crack is permeable to

electric field (Shindo et al., 1999; Kwon and Lee, 2001, etc.), and another assuming that the crack is

impermeable to electric field (Pak, 1990; Chen and Karihaloo, 1999, etc.). Consequently, electric boundary

conditions at the crack faces can be stated as
/þðx;�d=2; tÞ ¼ /�ðx;�d=2; tÞ; Dþ
y ðx;�d=2; tÞ ¼ D�

y ðx;�d=2; tÞ; 06 x6 a; t > 0 ð10Þ
for the permeable assumption, or
Dyðx;�d=2; tÞ ¼ �D0feðtÞ; 0 < x < a; t > 0 ð11Þ
for the impermeable assumption, where feðtÞ ¼ 0 as t6 0, and D0 is a prescribed constant.
3. Derivation of the singular integral equation

Due to the symmetry of the problem, it is sufficient to consider only the region yP 0. So in the following
we concentrate our attention to the region yP 0. To solve the above problem, a simplification of equations

in (6) can be achieved by introducing a new function
u ¼ /� e15
e11

w: ð12Þ
Hence, equations in (6) then become
r2w ¼ 1

c2s

o2w
ot2

; r2u ¼ 0; ð13Þ
where cs ¼
ffiffiffiffiffiffiffiffiffiffiffi
cD44=q

p
denotes the shear wave velocity of a piezoelectric ceramic, cD44 ¼ cE44 þ e215=e11 being the

elastic stiffened constant measured under a constant electric-displacement condition. Thus, the stress and
the electric displacement can be expressed in terms of w and u as follows
szx ¼ cD44w;x þ e15u;x; szy ¼ cD44w;y þ e15u;y ; ð14Þ

Dx ¼ �e11u;x; Dy ¼ �e11u;y : ð15Þ
Suppose that the piezoelectric ceramic is at rest initially. Application of the Laplace transform to the

equations in (13) leads to partial differential equations without t. Then, using the finite Fourier transform to
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these equations, it is easy to verify that an appropriate solution of equations in (13) in the Laplace

transform domain, satisfying (7) and (8), may be written in a Fourier series of the form
~wIðx; y; pÞ ¼ AI
0ðpÞ exp

p
cs

d
2

��
� y
��

þ
X1
n¼1

AI
nðpÞ exp nban

d
2

��
� y
��

cosðnbxÞ; ð16Þ

~uIðx; y; pÞ ¼ BI
0ðpÞ þ

X1
n¼1

BI
nðpÞ exp nb

d
2

��
� y
��

cosðnbxÞ ð17Þ
for 06 x6 h, yP d=2, and
~wIIðx; y; pÞ ¼ AII
0 ðpÞ

sinh p
cs
y

� �
sinh pd

2cs

� � þ
X1
n¼1

AII
n ðpÞ

sinhðnbanyÞ
sinh nband

2

� 	 cosðnbxÞ; ð18Þ

~uIIðx; y; pÞ ¼
X1
n¼1

BII
n ðpÞ

sinhðnbyÞ
sinh nbd

2

� 	 cosðnbxÞ ð19Þ
for 06 x6 h, 06 y6 d=2, with
an ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ hp

npcs

� �2
s

; b ¼ p
h
; ð20Þ
where a variable with the superscripts I or II specifies the variable in the region yP d=2 and in the region

06 y6 d=2, respectively, and AJ
nðpÞ and BJ

nðpÞ ðn ¼ 0; 1; 2; . . .Þ (J¼ I, II) are unknown functions to be
determined. Here the wave over a function denotes the Laplace transform of this function with respect to t,
and p is the Laplace transform parameter.

Furthermore, from (14) and (15) it is not difficult to obtain expressions for the components of stress and

electric displacement in the Laplace transform domain, which are omitted for saving space. In particular,

for y ¼ d=2 we get
~sIzyðx; d=2; pÞ ¼ � cD44p
cs

AI
0 � b

X1
n¼1

n½cD44anAI
n þ e15BI

n� cosðnbxÞ; ð21Þ

~sIIzyðx; d=2; pÞ ¼
cD44p
cs

AII
0 coth

pd
2cs

� �
þ b

X1
n¼1

n cD44anA
II
n coth

nbdan
2

� ��
þ e15BII

n coth
nbd
2

� ��
cosðnbxÞ;

ð22Þ

eDI
yðx; d=2; pÞ ¼ e11b

X1
n¼1

nBI
n cosðnbxÞ; ð23Þ

eDII
y ðx; d=2; pÞ ¼ �e11b

X1
n¼1

nBII
n coth

nbd
2

� �
cosðnbxÞ ð24Þ
for 06 x6 h.
Our aim is to determine the transient behavior in a cracked piezoelectric layer, in particular in the

vicinity of the crack tip. Consequently, in the following, we do not seek directly AI
n, A

II
n , B

I
n, and BII

n . Instead,

we introduce two new unknown functions as follows
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gðx; tÞ ¼ 1

2

o½Dwðx; tÞ�
ox

; hðx; tÞ ¼ 1

2

o½Duðx; tÞ�
ox

; ð25Þ
where
Dwðx; tÞ ¼ wIðx; d=2; tÞ � wIIðx; d=2; tÞ; ð26Þ

Duðx; tÞ ¼ uIðx; d=2; tÞ � uIIðx; d=2; tÞ: ð27Þ

Eliminating these unknown AI

n, A
II
n , B

I
n, and BII

n from given boundary conditions leads to singular integral

equations. To this end, at first, the continuity of the stress and the electric displacement at y ¼ d=2 allows us
to get
AII
0 ¼ �AI

0 tanh
pd
2cs

� �
; ð28Þ

AII
n ¼ �AI

n tanh
nbdan
2

� �
; BII

n ¼ �BI
n tanh

nbd
2

� �
; n ¼ 1; 2; . . . ð29Þ
These results are inserted into (16)–(19), and a simple evaluation yields
D~wðx; pÞ ¼ AI
0 1

�
þ tanh

pd
2cs

� ��
þ
X1
n¼1

AI
n 1

�
þ tanh

nbdan
2

� ��
cosðnbxÞ; ð30Þ

D~uðx; pÞ ¼ BI
0 þ

X1
n¼1

BI
n 1

�
þ tanh

nbd
2

� ��
cosðnbxÞ ð31Þ
for 06 x6 h. In the following, we consider a permeable and impermeable case, respectively.

3.1. Permeable case

With the help of the electric boundary condition (10), in connection with the continuity of electric

potential at the bonding of the regions I and II, i.e. a6 x6 h, y ¼ d=2, taking into account (12), we derive
BI
0 ¼ � e15

e11
AI
0 1

�
þ tanh

pd
2cs

� ��
; ð32Þ

BI
n 1

�
þ tanh

nbd
2

� ��
¼ � e15

e11
AI
n 1

�
þ tanh

nbdan
2

� ��
; n ¼ 1; 2; . . . ð33Þ
On the other hand, by using (21), application of the Laplace transform to the elastic boundary condition

(9) yields
cD44p
cs

AI
0 þ b

X1
n¼1

n½cD44anAI
n þ e15BI

n� cosðnbxÞ ¼ s0~fmðpÞ; 0 < x < a: ð34Þ
Furthermore, use of the condition Dwðx; tÞ ¼ 0, a6 x6 h, allows us to eliminate AI
n and BI

n. For this pur-

pose, if we choose AI
n represented in terms of the following integrals
AI
0 1

�
þ tanh

pd
2cs

� ��
¼ � 2

h

Z a

0

s~gðs; pÞds; ð35Þ

AI
n 1

�
þ tanh

nbdan
2

� ��
¼ � 4

nhb

Z a

0

~gðs; pÞ sinðnbsÞds; n ¼ 1; 2; . . . ; ð36Þ
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recalling the known result
s
2
þ
X1
n¼1

1

n
sinðnsÞ cosðnxÞ ¼

p
2
; 0 < x < s;

p
4
; x ¼ s;

0; s < x < p;

8<: ð37Þ
we find that Dwðx; tÞ ¼ 0 is automatically satisfied for a6 x6 h. On the other hand, substituting (35) and

(36) into (34) yields a singular integral equation for ~gðs; pÞ
1

h

Z a

0

~gðs; pÞ sinðbsÞ
cosðbsÞ � cosðbxÞ ds�

1

h

Z a

0

~gðs; pÞTPðs; x; pÞds ¼
s0
cE44

~fmðpÞ; 0 < x < a ð38Þ
with
TPðs; x; pÞ ¼
1

1� k2e

ps
cs

2

1þ tanh pd
2cs

� �
8<: þ 2

X1
n¼1

2an
1þ tanhðnband=2Þ

�
� 1

� k2e
1� tanhðnbd=2Þ
1þ tanhðnbd=2Þ

�
sinðnbsÞ cosðnbxÞ

9=;; ð39Þ
where ke ¼ e15=
ffiffiffiffiffiffiffiffiffiffiffi
cD44e11

p
is the electromechanical coupling coefficient, which may be defined by

k0e ¼ e15=
ffiffiffiffiffiffiffiffiffiffiffi
cE44e11

p
in other literature. In the above derivation, the known result
X1

n¼1

sinðnsÞ cosðnxÞ ¼ 1

2

sinðsÞ
cosðxÞ � cosðsÞ ; 0 < s; x < p ð40Þ
has been utilized.

In particular, if the distance between two cracks is large enough, that is, setting d ! 1, the governing

singular integral equation does not change except for the kernel TP replaced by
TPðs; x; pÞ ¼
1

1� k2e

ps
cs

"
þ 2

X1
n¼1

anð � 1Þ sinðnbsÞ cosðnbxÞ
#
: ð41Þ
Additionally, if imposing p ! 0, the kernel TPðs; x; pÞ appearing in (38) simplifies to
TPðs; x; pÞ ¼ 2
X1
n¼1

1� tanhðnbd=2Þ
1þ tanhðnbd=2Þ sinðnbsÞ cosðnbxÞ; ð42Þ
independent of all the material constants, and in this case the solution of (38) corresponds to the one in the

static case (t ! 1). Furthermore, the kernel TPðs; x; pÞ in (42) vanishes if d ! 1. For the latter, the

equation is solvable analytically, and the solution may be determined in a closed form.
3.2. Impermeable case

For this case, making use of the impermeable electric boundary condition (11) instead of (10) and

omitting the detailed procedure, in a similar manner one can derive the following equations for unknown
~gðs; pÞ and ~hðs; pÞ, respectively,
1

h

Z a

0

~gðs; pÞ sinðbsÞ
cosðbsÞ � cosðbxÞ ds�

1

h

Z a

0

~gðs; pÞTIðs; x; pÞds ¼
1

cD44
s0~fmðpÞ
�

þ e15
e11

D0
~feðpÞ

�
; ð43Þ
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1

h

Z a

0

~hðs; pÞ sinðbsÞ
cosðbsÞ � cosðbxÞ ds�

1

h

Z a

0

~hðs; pÞTDðs; x; pÞds ¼ � 1

e11
D0

~feðpÞ ð44Þ
for 0 < x < a, with
TIðs; x; pÞ ¼
ps
cs

2

1þ tanh pd
2cs

� �þ 2
X1
n¼1

2an
1þ tanhðnband=2Þ

�
� 1

�
sinðnbsÞ cosðnbxÞ; ð45Þ

TDðs; x; pÞ ¼ 2
X1
n¼1

1� tanhðnbd=2Þ
1þ tanhðnbd=2Þ sinðnbsÞ cosðnbxÞ: ð46Þ
For the case of a surface crack in a piezoelectric ceramic layer, it is sufficient to set d ! 1. That is, the

interaction of two cracks is negligible when the distance between two cracks is very large. In this case, the
above kernels reduce to
TIðs; x; pÞ ¼
ps
cs

þ 2
X1
n¼1

ðan � 1Þ sinðnbsÞ cosðnbxÞ; ð47Þ

TDðs; x; pÞ ¼ 0: ð48Þ

Further, the solution of the corresponding static case (t ! 1) can be easily obtained via solving analyti-

cally the equations corresponding to p ! 0 since in this case the kernel TIðs; x; pÞ ¼ 0.
4. Solution of the problem

Generally speaking, the dynamic solution cannot be obtained analytically due to the complexity of the

form of the kernels appearing the resulting singular integral equations. Therefore, in what follows we
appeal to numerical schemes to solve these singular integral equations. To this end, introducing the

dimensionless notations
�s ¼ 2
s
a
� 1; �x ¼ 2

x
a
� 1; ð49Þ
which are substituted into Eq. (38), then we find
a
2h

Z 1

�1

~gð�s; pÞ sin �sþ1
2
ab

� �
cos �sþ1

2
ab

� �
� cos �xþ1

2
ab

� � d�s� a
2h

Z 1

�1

~gð�s; pÞTP
�sþ 1

2
a; ;

�xþ 1

2
a; p

 !
d�s ¼ s0

cE44
~fmðpÞ ð50Þ
for �1 < �x < 1, where we still denote the unknown as ~gð�s; pÞ for convenience, but understood as
~gð�s; pÞ ¼ ~g
�sþ 1

2
a; p

 !
: ð51Þ
A further simplification can be achieved by using the following results
ab sin �sþ1
2
ab

� �
2 cos �sþ1

2
ab

� �
� cos �xþ1

2
ab

� �h iþ 1

�s� �x
! 0 as �s ! �x; ð52Þ

b ¼ p
h
; ð53Þ
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and the above equation can be then rewritten as a normalized form over the interval ð�1; 1Þ:
1

p

Z 1

�1

~gð�s; pÞ
�s� �x

d�sþ 1

p

Z 1

�1

~gð�s; pÞRPð�s;�x; pÞd�s ¼ � s0
cE44

~fmðpÞ; �1 < �x < 1; ð54Þ
where the kernel
RPð�s;�x; pÞ ¼
ab
2
TP

�sþ 1

2
a;
�xþ 1

2
a; p

 !
�

ab sin �sþ1
2
ab

� �
2 cos �sþ1

2
ab

� �
� cos �xþ1

2
ab

� �h i� 1

�s� �x
ð55Þ
is bounded, and does not have any singularity even for �s ! �x. The singular part of the kernel appears only
in the first term at the left-hand side of Eq. (54), so Eq. (54) is a standard singular integral equation with

Cauchy kernel. The numerical solution can be attacked by the technique established by Erdogan et al.

(1973) and further developed by Theocaris and Ioakimids (1977). Because of the same form of the resulting
singular integral equations, the treatment of other two equations (43) and (44) is completely analogous, and

omitted.

Following Erdogan et al. (1973), ~gð�x; pÞ may be assumed to take the form according to the variable �x
~gð�x; pÞ ¼ �
ffiffiffi
2

p
Xð�x; pÞs0

cE44
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �x2

p ; ð56Þ
where Xð�x; pÞ is a bounded continuous function in the interval �16�x6 1, which is obtainable by existing

approaches, and the negative sign and
ffiffiffi
2

p
at the right-hand side are introduced for convenience. Fur-

thermore, in view of gðx; tÞ ¼ ðDwÞ;x=2, from the physical considerations, ~gðx; pÞ in 0 < x < a must have

singularity at the crack tip x ¼ a, and has no any singularity at the crack mouth x ¼ 0. Hence, in order to

avoid the occurrence of a singularity at the crack mouth, one may impose an artificial constraint for ~gð�x; pÞ,

Xð�1; pÞ ¼ 0: ð57Þ
In what follows the Lobatto–Chebyshev collocation method developed by Theocaris and Ioakimids

(1977) is utilized to determinate a numerical solution of Eq. (54). It is worth noting that this method has a
remarkable advantage as compared to the Gauss–Chebyshev collocation method (Erdogan et al., 1973),

since field intensity factors at the crack tip are obtained directly for the former case, and evaluated with a

complementary procedure such as extrapolation based on the determined internal values for the latter case.

Accordingly, by employing the quadrature formula
1

p

Z 1

�1

1

�s� �xj

Xð�sÞffiffiffiffiffiffiffiffiffiffiffiffi
1� �s2

p d�s ’ 1

n

Xn
i¼0

ki
Xð�siÞ
�si � �xj

; ð58Þ
where �xj ¼ cos½ð2j� 1Þp=2n�, �si ¼ cosðip=nÞ, ðj ¼ 1; 2; . . . ; n; i ¼ 0; 1; . . . ; nÞ, k0 ¼ kn ¼ 1=2, k1 ¼ � � � ¼
kn�1 ¼ 1, Eq. (54) subjected to the constraint (57) is approximated by the following system of nþ 1 linear

algebraic equations in nþ 1 unknown Xð�siÞ ði ¼ 0; 1; . . . ; nÞ:
1

n

Xn
i¼0

ki
Xð�siÞ
�si � �xj

þ 1

n

Xn
i¼0

kiRPð�si;�xj; pÞXð�siÞ ¼
1ffiffiffi
2

p ~fmðpÞ; j ¼ 1; 2; . . . ; n; ð59Þ
Xð�1Þ ¼ 0; ð60Þ
where we have omitted the parameter p in Xð�si; pÞ, for simplicity.
The values of Xð�sÞ at the collocation points �si, Xð�siÞ, are therefore determined by solving the above

resulting algebraic system. In particular, of much interest is Xð1Þ, which is directly related to or proportional
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to the field intensity factors. Once Xð1Þ is obtained, the dynamic stress intensity factor in the Laplace

transform domain, defined by
Ks
IIIðtÞ ¼ lim

x!aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðx� aÞ

p
sIzyðx; 0; tÞ ð61Þ
can be evaluated by
eK s
IIIðpÞ ¼ XPð1Þs0

ffiffiffiffiffiffi
pa

p
; ð62Þ
for permeable surface cracks, or
eK s
IIIðpÞ ¼ s0XIð1Þ



þ e15

e11
D0½XIð1Þ � XDð1Þ�

� ffiffiffiffiffiffi
pa

p
ð63Þ
for impermeable surface cracks. Here Xð1Þ with a subscript stands for the solution to Eq. (54) corre-
sponding to the kernel with the same subscript.

Similar treatment can arrive at the electric-displacement intensity factors. It indicates that the stress and

the electric-displacement for each case exhibit a usual square-root singularity, but the corresponding

intensity factors have different relationships of dependence. That is, the intensity factors of stress and

electric-displacement depend only on mechanical impact, not on electric impact for permeable cracks,

whereas the stress intensity factors depend not only on mechanical impact, but also on electric impact for

impermeable cracks. However, the electric-displacement intensity factors are independent of mechanical

impact for impermeable cracks. In effect, taking into account the fact that time t does not appear in the
kernel TDðs; x; pÞ, application of the inverse Laplace transform to Eq. (44) yields an equation in time do-

main, and so we have
KDðtÞ ¼ �feðtÞXDð1ÞD0

ffiffiffiffiffiffi
pa

p
; ð64Þ
where XDð1Þ is the solutions relating to the equation without t. Note that impact loadings here refer only to
those acting on the crack faces. Owing to the coupling feature between elastic and electric fields in a pie-

zoelectric material, a mechanical impact acting on the crack faces may be produced by a remote electric

excitation, and similarly an electric impact on the crack faces may be caused by a remote mechanical

excitation.

In analyzing the stability of a crack in a piezoelectric material, there exist some fracture criteria in theory.

Energy release rate according to the classical definition may give rise to negative values for certain com-

bined electromechanical loadings, which lacks clear physical interpretation, while strain energy release rate

(SERR) presented by Park and Sun (1995) seems to be a suitable fracture criterion for a cracked piezo-
electric material since theoretical prediction based on this criterion agrees basically with the experimental

data given in Park and Sun (1995). In the present study, the dynamic SERR
GSðtÞ ¼ lim
d!0

1

2d

Z d

0

sIzyðr; d=2; tÞDwðd� r; tÞdr ð65Þ
r being the distance from the crack tip, is adopted. From the above-obtained results, for the case of

fmðtÞ ¼ feðtÞ, a direct evaluation can derive dynamic SERR in the present study as
GSðtÞ ¼ ðs0Þ2pa
2

ksðtÞkcðtÞ ð66Þ
for permeable and impermeable cracks, where ksðtÞ and kcðtÞ represent the inverse Laplace transforms of
~ksðpÞ and ~kcðpÞ, given by
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~ksðpÞ ¼ XPð1Þ for the permeable case;
XIð1Þ þ DmðXIð1Þ � XDð1ÞÞ for the impermeable case;



ð67Þ
and
~kcðpÞ ¼
1
cE
44

XPð1Þ for the permeable case;
1þDm
cD
44

XIð1Þ for the impermeable case;

(
ð68Þ
where Dm ¼ e15D0=e11s0.
5. Results and discussions

In this section, numerical results for dynamic SERRs will be presented based on the above-obtained

results. For this purpose, a numerical inversion of the Laplace transform (Crump, 1976) is adopted to

determine ksðtÞ and kcðtÞ, and then dynamic SERRs. Numerical computations are carried out for a PZT-5H

layer with two surface cracks. The relevant material constants are cE44 ¼ 3:53� 1010 N/m2, e15 ¼ 17:0 C/m2,

e11 ¼ 151� 10�10 C/Vm, Gcr ¼ 5:0 N/m (Pak, 1990). For simplicity, impact functions fmðtÞ and feðtÞ are

chosen to be the Heaviside unit step function HðtÞ, which is frequently used in the study of fracture
mechanics.

First, the effects of the material properties on the dynamic stress intensity factors are examined. From

(63), along with Eqs. (43) and (44), it can be concluded that the normalized stress intensity factor ksðtÞ as a
function of the normalized time cst=a is independent of the material properties for impermeable cracks if

treating e15D0=e11s0 as a single independent parameter Dm ¼ e15D0=e11s0. However, this is not true for

permeable cracks. For latter, ke ¼ e15=cD44e11 has a strong influence on the dynamic stress intensity factors.

Figs. 2 and 3 display variation of the normalized dynamic stress intensity factor ksðtÞ against the normalized

time cst=a with h=a ¼ 2; 5, respectively, for permeable surface cracks. For comparison, the corresponding
results for a purely elastic medium, which may be treated as the results neglecting the piezoelectric constant

e15, are plotted in these figures. As seen from Figs. 2 and 3, a dynamic overshoot is very apparent. For a
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Fig. 2. ksðtÞ vs cst=a with d=a ¼ 5, 8 and h=a ¼ 2 for a cracked PZT-5H layer.
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Fig. 3. ksðtÞ vs cst=a with d=a ¼ 5, 8 and h=a ¼ 5 for a cracked PZT-5H layer.
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purely elastic medium, as expected, a dynamic overshoot occurs exactly at cst=a ¼ 2, since the waves
generated at the crack faces near the crack tip are reflected through the surface x ¼ 0, and arrive at again

the crack tip, taking the normalized time cst=a ¼ 2. Owing to the influence of ke, a dynamic overshoot

occurs later slightly than a purely elastic medium, and the magnitude is intensified or weakened depending

upon h=a. Also expected is that the response curve of ksðtÞ for d=a ¼ 5 is the same as that for d=a ¼ 8 before

the arrival of the wave-fronts generated at the crack in y < 0. After the arrival of these wave-fronts, the

dynamic interaction of two cracks takes place. For example, it takes time cst=a ¼ 5 for the wave-fronts,

which weaken the stress intensity factors, to travel the crack tip in y > 0 for d=a ¼ 5; so ksðtÞ drops

immediately at cst=a ¼ 5. As time is large enough, the effect of ke is seen to be very slight and negligible, in
accordance with the fact that the static stress intensity factors are independent of material properties

including ke. Therefore, ke causes the delay of response of ksðtÞ, and the peaks are intensified or weakened

depending on h=a.
Figs. 4–6 show the dynamic SERR normalized by ðs0Þ2pa=2Gcr, denoted as G0ðtÞ, against cst=a with

h=a ¼ 2; 5; 8, for three different distances between two cracks d=a ¼ 2; 5; 8, respectively, for permeable

cracks. In the following calculations, s0 and a are taken as 4:2� 106 N/m2 and 0:01 m. By comparison, it is

found that the curves of G0ðtÞ in Fig. 4 decreases more rapidly in a small range after cst=a ¼ 2 than those in

Figs. 5 and 6. This is due to the dynamic interaction of two cracks. The reason is that for d=a ¼ 2, it takes
about cst=a ¼ 2 for the waves generated at the crack in y < 0, which weaken the magnitude of G0ðtÞ, to
travel the crack tip in y > 0, while for d=a ¼ 5 or 8, the waves generated at the crack in y < 0 do not reach

the crack tip in y > 0 when cst=a ¼ 2; so the curves of G0ðtÞ in Figs. 5 and 6 look like the same before

cst=a < 5. The dynamic interaction of two cracks with the free boundaries is also observed in Figs. 4–6.

From these figures, it is seen that the curves of G0ðtÞ for h=a ¼ 5 are almost the same as those for h=a ¼ 8

before cst=a ¼ 8, and they deviate clearly away after cst=a ¼ 10. This is because that for h=a ¼ 5, the wave-

fronts reflected through the layer surface x ¼ h reach again the crack tip, taking time cst=a ¼ 8, and the

second reflected waves through the layer surface x ¼ 0 reach the crack tip, taking time cst=a ¼ 10. Fur-
thermore, from Fig. 6 we find that the response curves of G0ðtÞ starting from the origin, rise rapidly,

arriving at the first peak at about cst=a ¼ 2:3, and then oscillate due to the superposition of the reflected



0 10 12 14
0.0

0.5

1.0

PZT-5H
d/a=2

G
0 (t

)

cst/a

 h/a=2
 h/a=5
 h/a=8

2 4 6 8

Fig. 4. Variation of G0ðtÞ against cst=a with d=a ¼ 2 and h=a ¼ 2, 5, 8 under the permeable assumption.
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Fig. 5. Variation of G0ðtÞ against cst=a with d=a ¼ 5 and h=a ¼ 2, 5, 8 under the permeable assumption.
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waves through the layer surfaces and the scattering waves by two cracks, similar to Figs. 2 and 3. For

example, for d=a ¼ 8, the curves of G0ðtÞ in Fig. 6 deviate slightly in a small region after cst=a ¼ 4 owing to

the influence of ke, and fall down immediately at cst=a ¼ 8 with the arrival of the generated waves at the
other crack. After a small period of time, the scattering waves are generated and intensify the magnitude of

G0ðtÞ; so G0ðtÞ is seen to climb the second peak.

From the above, in addition to the geometric parameters, ke has a strong influence on G0ðtÞ for per-

meable cracks, while electric impacts at the crack faces has no any influence of G0ðtÞ. However, for

impermeable cracks, electric impacts have a pronounced contribution in G0ðtÞ. For different electric im-

pacts, variation of G0ðtÞ against cst=a is plotted with h=a ¼ 5 and d=a ¼ 2; 5; 8, in Figs. 7–9. As compared to
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Fig. 6. Variation of G0ðtÞ against cst=a with d=a ¼ 8 and h=a ¼ 2, 5, 8 under the permeable assumption.
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permeable cracks, similar trends are observed in these figures. In particular, the curves of G0ðtÞ rise in a
straight line at the early stage of action of impacts, which agrees with the result for a piezoelectric material

with a semi-infinite crack (Li, 2001), since in this stage, the reflected waves through x ¼ h and generated

waves at the other crack do not arrive at the crack tip, and all the contributions in G0ðtÞ near the crack tip

arises from the waves generated at the crack itself and reflected through x ¼ 0. In contrast to G0ðtÞ for

permeable cracks, for impermeable cracks G0ðtÞ has a dynamic overshoot at exact time cst=a ¼ 2 when

h=a > 2 and d=a > 2. Moreover, the peak values decrease gradually with an increase of the number of

reflected waves and scattering waves, and G0ðtÞ approaches the corresponding static value as time tends to

infinity. On the other hand, G0ðtÞ becomes greater or lesser depending upon positive or negative electric
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impacts, which indicates that positive electric impacts promote crack growth, and negative electric impacts
hinder crack growth, in accordance with the static analysis and experimental phenomena (Park and Sun,

1995). Additionally, it should be noted that the response curves of G0ðtÞ for Dm ¼ �0:5 are flatter than

those for Dm ¼ 0; 0:5. In effect, it can be concluded from (68) that G0ðtÞ ¼ 0 for Dm ¼ �1, which reveals that

the strain vanishes, and of course the cracks do not propagate in this case. (Fig. 10)

Under a positive electric displacement, the effect of the layer thickness on the normalized SERR G0ðtÞ for
two impermeable surface cracks spaced by a fixed distance is illustrated in Fig. 10. By inspection, it is found

from Fig. 10 that for two surface cracks spaced by a fixed distance, the transient response is independent of

the thickness of the piezoelectric layer during the early stage of the action of impact, and relies on the
thickness after a period of time.
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6. Conclusions

The transient problem involving two surface cracks in a piezoelectric ceramic layer is analyzed under the

action of antiplane mechanical and inplane electric impacts. Using integral transform techniques, the mixed
boundary value problem is converted into singular integral equations. Dynamic field intensity factors in the

Laplace transform domain are obtained. By solving numerically the resulting singular integral equations

and performing numerically the inverse Laplace transform, the dynamic stress intensity factor and strain

energy release rate are presented graphically to show the effects of the geometric parameters and the

material properties. The dynamic interaction of two cracks, and cracks with free boundaries are analyzed

and explained in detail.
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