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Abstract

The transient response of a transversely isotropic piezoelectric ceramic layer containing two surface cracks is
analyzed under the action of antiplane mechanical and inplane electric impacts. By using the Laplace transform
and the finite Fourier transform, the mixed initial-boundary-value problem is reduced to singular integral equations
of the first kind. The Lobatto—Chebyshev collocation technique is employed to solve numerically the resulting
singular integral equations, and dynamic field intensity factors and strain energy release rate are determined for
both permeable and impermeable cracks. Performing the inverse Laplace transform, numerical results are presented
graphically to show the effects of the geometric parameters, and the material properties on the dynamic strain
energy release rate. The dynamic interaction of two surface cracks, and cracks with free surfaces is discussed in
detail.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

As a class of smart materials, piezoelectric ceramics have been widely used in adaptive microelectro-
mechanical systems such as sensors, actuators, and transducers due to a strong coupling characteristic
between elastic and electric behaviors (Rao and Sunar, 1994; Uchino, 1998). Now, piezoelectric sensors,
actuators, and transducers of various configurations can be manufactured for specified functions (Tsou and
Bergman, 1998). For example, in signal processing applications, with the aid of excitation or reception of
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the surface acoustic waves, an interdigital transducer is a thin piezoelectric layer bonded perfectly on a
elastic substrate. And on the surface of the piezoelectric film, an array of electrodes is arranged according to
different patterns (Dieulesaint and Royer, 1980).

On the other hand, a disadvantage of piezoelectric ceramics is that they are very brittle and has low
strength, so they are susceptive to fracture. In recent years, the study of the reliability of piezoelectric
ceramics with defects has become an intensive subject of investigation (Suo et al., 1992; Yang, 2001). In
particular, since piezoelectric structures usually operate in environment relating to time-dependent
loadings, the dynamic response problem of mechanical and electrical behaviors in a cracked piezoelectric
ceramic under various time-dependent loadings is of great significance. Along this line, many efforts in
this field have been made in theory to analyze the responses of the electric and elastic fields disturbed by
cracks in a piezoelectric material subjected to dynamic electromechanical loadings. The dynamic Green’s
functions for anisotropic piezoelectric materials have been formulated by Narris (1994). The fundamental
solutions for dynamic piezoelectricity equations of piezoelectric materials have been derived by Khu-
toryansky and Sosa (1995), Sosa and Khutoryansky (2001). For a cracked piezoelectric material under the
action of time-dependent electromechanical loadings, Dascalu and Maugin (1995) studied the dynamic
problem of crack propagation in a self-similar manner in a piezoelectric material by the quasielectrostatic
approximation method. The dynamic electroelastic behavior of a piezoelectric material has been analyzed
for a semi-infinite moving crack subjected to impact loads by Li and Mataga (1996a,b) with the electrode
boundary condition and the vacuum boundary condition at the crack faces, respectively. For a semi-
infinite stationary crack in a piezoelectric material subjected to a concentrated electromechanical impact
at the crack faces, a closed-form solution has been derived for an impermeable crack by Li (2001).
Generally speaking, a crack in a piezoelectric material is commonly of finite length. In this case, elec-
troelastic field under electromechanical impacts acting on the crack faces, in particular the effect of electric
impact on elastic behavior, has been analyzed by Shindo et al. (1999) for mode-I crack, who determined
numerically the dynamic stress intensity factor and the dynamic energy release rate under the electrically
permeable assumption, and by Chen and Karihaloo (1999) for mode-III crack, who gave some numerical
results on the dynamic stress intensity factor for an impermeable crack. Some similar dynamic problems
in a piezoelectric strip containing transverse or longitudinal internal crack(s) have further been investi-
gated under the electrically permeable or impermeable assumption (Chen and Meguid, 2000; Wang and
Yu, 2000; Meguid and Chen, 2001; Shin et al., 2001; Gu et al., 2002; Li and Fan, 2002; Li and Tang,
2003).

For multiple mode-III cracks in a non-homogeneous smart laminate material, the dynamic analysis has
been proposed via integral transform approaches by Wang et al. (1998), Wang and Noda (2001). Recently,
Meguid and Zhao (2002) considered antiplane shear crack situated at the interface a piezoelectric strip
bonded to an elastic half-space subjected to dynamic impacts, and studied electroelastic response under
permeable and impermeable assumptions. They found that electric-displacement intensity factors for an
impermeable crack exhibit a transient feature, and depend on time, which is contrast to the existing results.
However, it should be pointed out that this conclusion is based on the adopted boundary conditions at the
surfaces of the crack, which are different from the previous.

This paper is concerned with the transient problem of a piezoelectric layer with two surface cracks
subjected to sudden electromechanical impact. The dynamic interaction of two surface cracks is analyzed
for the case of antiplane mechanical and inplane electric excitations. The Laplace transform and the finite
Fourier transform are employed to reduce the mixed initial-boundary-value problem to singular integral
equations with Cauchy kernel of the first kind. Based on the Lobatto—Chebyshev collocation quadrature
technique, the resulting singular integral equations are solved numerically. The dynamic strain energy re-
lease rate (SERR) is obtained both for permeable and impermeable cracks by a numerical inversion of the
Laplace transform. The effects of the geometric parameters and the material properties are examined in
detail.
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2. Statement of the problem

For a typical actuator composed of a thin piezoelectric ceramic layer, it is assumed that the piezoelectric
layer is transversely isotropic. The problem to be considered is depicted in Fig. 1, where Cartesian coor-
dinates x,y,z are the principal axes of the material symmetry while the z-axis is oriented in the poling
direction of the piezoelectric ceramic, which is not depicted in Fig. 1. The thickness of the piezoelectric
ceramic layer is assumed to be 4, and two surface cracks of equal length and spaced by distance d occupy
the regions 0 <x<a, y=+d/2, —o0o < z < co. For a piezoelectric actuator, an external electric field is
usually applied to parallel to the poling direction of the piezoelectric material, which gives rise to elastic
displacements parallel to and perpendicular to the poling axis. In other words, under such circumstances,
piezoelectric ceramics undergo expansion or shrinkage. However, a recent experiment by Mueller and
Zhang (1998) showed that shear strain response of piezoelectric ceramics under the action of an external
electric field perpendicular to the poling axis can be exploited to design new piezoelectric actuators. In the
following analysis, special attention is paid to the latter case.

From the viewpoint of fracture mechanics, of much significancy is the singular field near a crack tip.
Hence, in the present study we consider the case where sudden impacts are simultaneously exerted at the
crack faces. Within the framework of the theory of linear piezoelectricity, the constitutive equations in the
piezoelectric ceramic take the forms

0i; = CijuSk — €L, D; = ejSi + L. (1)

When subjected to sudden antiplane mechanical and inplane electric impacts, the piezoelectric ceramic layer
is in a state of longitudinal shear deformation. In this case, the antiplane deformation is coupled with the
inplane electric field, and the corresponding constitutive equations reduce to

E E
Toe = CpyVue — €15Ex, Toy = Cgq.y — €15E), (2)

D, = eisy., + enky, D, = esy,, + enky, (3)

where ¢k, ¢11, and e;5 are the elastic stiffness measured in a constant electric field, the dielectric permittivity
measured at a uniform strain, the piezoelectric constant, respectively, 7, y, D, and E are stress, strain, electric
displacement, and electric field, respectively. Here strain and electric field can be determined in terms of the
out-of-plane displacement w(x,y,¢) and inplane electric potential ¢(x,y,?), by the following gradient
relations

Vo = Way Yy = Wy, 4)

Ex = _(b,xa Ey = _¢,y7 (5)

where the comma following a function denotes partial differentiation with respect to the suffix space
variable.

From the equation of motion and the equilibrium equation of charges, neglecting body forces and free
charges, it follows that w(x,y,¢) and ¢(x,y, ) satisfy the basic governing partial differential equations
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ma) e
. ® ®__
_—® (R

X

Fig. 1. Schematic of a piezoelectric ceramic layer with two surface cracks.
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*w
cEViw+esVip = Par e1sViw — & Vi = 0, (6)

where p is the mass density of the piezoelectric ceramic, and V? represents the two-dimensional Laplacian
operator.

The relevant mechanical and electric boundary conditions are given as follows. The layer boundary
surfaces are clearly free of stress and of electric displacement, which can be stated as below

7(0,y,8) =0, 1 (h,y,1) =0, —oco <y < oo, t>0, (7)

D.(0,y,t) =0, D.(h,y,t)=0, —co<y<oo, t>0. (8)

Apart from the above boundary conditions at the layer surfaces, appropriate boundary conditions at the
crack faces must be furnished. For elastic part, obviously, we have

Ty(x, £d/2,1) = —1ofu(t), 0<x<a, t>0, 9)

where f,,(1) = 0 as t <0, and 1, is a prescribed constant. However, there are some controversial arguments
for electric boundary conditions at the crack faces, one opinion assuming that the crack is permeable to
electric field (Shindo et al., 1999; Kwon and Lee, 2001, etc.), and another assuming that the crack is
impermeable to electric field (Pak, 1990; Chen and Karihaloo, 1999, etc.). Consequently, electric boundary
conditions at the crack faces can be stated as

¢ (x,£d/2,1) = ¢ (x,£d/2,1), Dj(x,+d/2,t) =D, (x,+d/2,1), 0<x<a, t>0 (10)
for the permeable assumption, or
D,(x,+d/2,t) = —=Dof.(t), 0<x<a, t>0 (11)

for the impermeable assumption, where f,(¢) = 0 as 1< 0, and Dy is a prescribed constant.

3. Derivation of the singular integral equation

Due to the symmetry of the problem, it is sufficient to consider only the region y = 0. So in the following
we concentrate our attention to the region y > 0. To solve the above problem, a simplification of equations
in (6) can be achieved by introducing a new function

€is
p=¢——w (12)
e
Hence, equations in (6) then become
1 *w

Viw=— —,
2 o

Vo =0, (13)

where ¢, = /cB,/p denotes the shear wave velocity of a piezoelectric ceramic, ¢}, = ¢}, + e2s/¢11 being the
elastic stiffened constant measured under a constant electric-displacement condition. Thus, the stress and
the electric displacement can be expressed in terms of w and ¢ as follows

D D
Tox = CyWy + €150 x» Ty = CyuW, + €159, (14)

D, = —¢eno,, D, = —eng,. (15)

Suppose that the piezoelectric ceramic is at rest initially. Application of the Laplace transform to the
equations in (13) leads to partial differential equations without ¢. Then, using the finite Fourier transform to
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these equations, it is easy to verify that an appropriate solution of equations in (13) in the Laplace
transform domain, satisfying (7) and (8), may be written in a Fourier series of the form

W' (x,»,p) = 4 (p) exp [ (g - y)} + ZA (p) exp [nﬂoc,,(czl y)] cos(npx), (16)
@' (x,»,p) (p) + ZBI (p) exp [nﬁ(% - y)} cos(npx) (17)

for 0<x<h, y>d/2, and
~ 11 — 4u smh( ) L sinh(nfo,y) 18
W (x,y,p) = 4, (p) smh( ) +Z (D) sinh ( nﬁ% ) cos(npx), (18)
@Il(x,%P) = Z H(P) :11;1:11((”,55; cos(nfx) (19)

for 0<x<h, 0<y<d/2, with

14 (22 2 B=1 (20)
nmey ) R

where a variable with the superscripts I or II specifies the variable in the region y > d/2 and in the region
0<y<d/2, respectively, and 4)(p) and B!(p) (n=0,1,2,...) (J=1, II) are unknown functions to be
determined. Here the wave over a function denotes the Laplace transform of this function with respect to ¢,
and p is the Laplace transform parameter.

Furthermore, from (14) and (15) it is not difficult to obtain expressions for the components of stress and
electric displacement in the Laplace transform domain, which are omitted for saving space. In particular,
for y =d/2 we get

# (x,d/2,p) = C"‘*”AI B nlcBondl + e1sB!] cos(nf), (21)

n=1

T(x,d/2,p) = 44PAH <§j> + ﬁio:n {cﬁan/l,? coth (nﬁj%) + ;5B coth (@)} cos(npx),
s n=1
(22)
Di(x,d/2,p) = & ﬂianl cos(nfix), (23)
n=1
DM (x,d/2,p) = —sllﬁZnBH coth ( npd )cos(nﬂx) (24)

for 0 <x<h.

Our aim is to determine the transient behavior in a cracked piezoelectric layer, in particular in the
vicinity of the crack tip. Consequently, in the following, we do not seek directly 4!, A", B!, and B". Instead,
we introduce two new unknown functions as follows



3198 X.-F. Li, K. Y. Lee | International Journal of Solids and Structures 41 (2004) 3193-3209

g(x, 1) :%%E?t)], h(x, 1) :%W, (25)
where

Aw(x,t) = w(x,d/2,t) — w'(x,d/2,1), (26)

Ao(x,t) = ¢'(x,d/2,t) — " (x,d/2,1). (27)

Eliminating these unknown 4!, A", B!, and B! from given boundary conditions leads to singular integral
equations. To this end, at first, the continuity of the stress and the electric displacement at y = d/2 allows us
to get

AV = _ 4! anh (;’j ) (28)
A" = 4 tanh (”ﬁ;’“”) B" = —B' tanh (@) n=12,... (29)
These results are inserted into (16)—(19), and a simple evaluation yields
Aw(x,p) = {1 + tanh ( Z)} + ZA] {1 + tanh ( nfdo )} cos(nfx), (30)
Ap(x,p) = By + iB}z [1 + tanh (nlédﬂ cos(npx) (31)
=1

for 0 <x < &. In the following, we consider a permeable and impermeable case, respectively.
3.1. Permeable case

With the help of the electric boundary condition (10), in connection with the continuity of electric
potential at the bonding of the regions I and 11, i.e. a <x <A, y = d/2, taking into account (12), we derive

pd
Bl=-8401 h 2
0= T + tan 2. (32)

B! {lthanh( ﬁ )] = :5/11 {1+tanh <”ﬁ§“>} n=12,... (33)

On the other hand, by using (21), application of the Laplace transform to the elastic boundary condition
(9) yields

c? X ~
z;‘pAé + ﬁz nley,AL + eisBY cos(nfx) = 1of(p), 0<x<a. (34)

s n=1

Furthermore, use of the condition Aw(x,?) =0, a <x < A, allows us to eliminate Af, and B,Iq. For this pur-
pose, if we choose 4! represented in terms of the following integrals

I pd __%/a ~
Ao{l—ktanh(z%)] ==, sg(s,p)ds, (35)

do, 4 [ .
A {lthanh(nﬁzOC >} :fm/o g(s,p)sin(nfs)ds, n=1,2,..., (36)
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recalling the known result

s 1 7y 0<x<s,
3 Z . sin(ns) cos(nx) = ¢ 5, x=s, (37)
n=1 0, s<x<m,

we find that Aw(x,7) = 0 is automatically satisfied for ¢ <x < /. On the other hand, substituting (35) and
(36) into (34) yields a singular integral equation for g(s, p)

1 [ g(s,p)sin(fs) L _ Mg
h /o cos(fs) — cos(fx) ds - h /0 85, p)Te(sx,p)ds = ?4E4‘fm<p)7 exsa )
with
1 ps 2 - 20,
Te(s,x.p) = 1-k ) ¢ 1 +tanh(£ﬂcx> " =1 {1 + tanh(nfe,d/2) :
1 — tanh(nfd/2)7 .
T (a3 | R ot )

where k, = ejs/\/chen is the electromechanical coupling coefficient, which may be defined by
k. = e1s/\/cken in other literature. In the above derivation, the known result

= . 1 sin(s)

sin cos =——— " 0<s, x<m 40
- (ns) cos(nx) 2 cos(x) — cos(s) 5 (40)
has been utilized.

In particular, if the distance between two cracks is large enough, that is, setting d — oo, the governing
singular integral equation does not change except for the kernel 7p replaced by

n

To(s,x,p) = L + 2 Z — 1) sin(nfs) cos(nfx) | . (41)

1—

Additionally, if imposing p — 0, the kernel Tp(s,x, p) appearing in (38) simplifies to

1 — tanh(nfd/2) .
S X p ZZ HT}W Sln(nﬁs) COS(nﬂx), (42)
independent of all the material constants, and in this case the solution of (38) corresponds to the one in the
static case (¢ — oo). Furthermore, the kernel Tp(s,x,p) in (42) vanishes if d — co. For the latter, the
equation is solvable analytically, and the solution may be determined in a closed form.

3.2. Impermeable case

For this case, making use of the impermeable electric boundary condition (11) instead of (10) and
omitting the detailed procedure, in a similar manner one can derive the following equations for unknown
g(s,p) and h(s, p), respectively,

1 g(s,p) sin(fs)

a 1 a~ 1 ~, €1s
i | e | dep s s = )+ D) @3)
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1 [ }Nz(s,p) sin(fs) 1 /- I
%/0 cos(fs) — cos(fx) dsfz/o h(s,p)Tp(s,x,p)ds = *aDofe(P) (44)

for 0 < x < a, with

ps = )
Ti(s,x,p) = c“W Z{Htanh oFad ) — 1| sin(nfs) cos(npx), (45)

_» Z 1= tanh(nfd/2) o 60 cos(nf). (46)

p(s,%p) 1+ tanh(npd/2)

For the case of a surface crack in a piezoelectric ceramic layer, it is sufficient to set d — oo. That is, the
interaction of two cracks is negligible when the distance between two cracks is very large. In this case, the
above kernels reduce to

Ti(s,x,p) = —+ 22 — 1) sin(nfs) cos(nfx), (47)

Tn(s,x,p) = 0. (43)

Further, the solution of the corresponding static case (¢t — oo) can be easily obtained via solving analyti-
cally the equations corresponding to p — 0 since in this case the kernel 7;(s,x, p) = 0.

4. Solution of the problem

Generally speaking, the dynamic solution cannot be obtained analytically due to the complexity of the
form of the kernels appearing the resulting singular integral equations. Therefore, in what follows we
appeal to numerical schemes to solve these singular integral equations. To this end, introducing the
dimensionless notations

-1, (49)

which are substituted into Eq. (38), then we find

. 2(s,p) sin (”1 aﬁ)
2h /4 cos %aﬁ) — cos (%“ﬁ)

for —1 < x < 1, where we still denote the unknown as g(s, p) for convenience, but understood as

1 s+1 1
gy [ Se S e o= 2 o0

s+1
2(s.p) = ( . p> (s1)
A further simplification can be achieved by using the following results
apsin (45ap) |

+ —0 ass—x, (52)

2{cos (”‘aﬁ) — cos (%aﬁ)} §oX

s
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and the above equation can be then rewritten as a normalized form over the interval (—1,1):

1[1 g(s,p )d +1[g(sp)Rp(sxp) Efm(P) -1 <x<1, (54)

T 5—X 1

where the kernel

Rp(5,%,p) =

< = afsin ( la
O B R

2 2 a,2a7p> _Z[COS (%aﬂ) — cos (%aﬁ)} 5-x

is bounded, and does not have any singularity even for s — X. The singular part of the kernel appears only
in the first term at the left-hand side of Eq. (54), so Eq. (54) is a standard singular integral equation with
Cauchy kernel. The numerical solution can be attacked by the technique established by Erdogan et al.
(1973) and further developed by Theocaris and Ioakimids (1977). Because of the same form of the resulting
singular integral equations, the treatment of other two equations (43) and (44) is completely analogous, and
omitted.

Following Erdogan et al. (1973), g(x, p) may be assumed to take the form according to the variable x

~V2Q(x,p)1
V1 —x2 ’

where Q(x, p) is a bounded continuous function in the interval —1 <x < 1, which is obtainable by existing
approaches, and the negative sign and v/2 at the right-hand side are introduced for convenience. Fur-
thermore, in view of g(x,¢) = (Aw) /2, from the physical considerations, g(x,p) in 0 < x < a must have
singularity at the crack tip x = a, and has no any singularity at the crack mouth x = 0. Hence, in order to
avoid the occurrence of a singularity at the crack mouth, one may impose an artificial constraint for g(x, p),

Q(—1,p) = 0. (57)

In what follows the Lobatto—Chebyshev collocation method developed by Theocaris and Ioakimids
(1977) is utilized to determinate a numerical solution of Eq. (54). It is worth noting that this method has a
remarkable advantage as compared to the Gauss—Chebyshev collocation method (Erdogan et al., 1973),
since field intensity factors at the crack tip are obtained directly for the former case, and evaluated with a
complementary procedure such as extrapolation based on the determined internal values for the latter case.
Accordingly, by employing the quadrature formula

1/ 1 QB 1<, Q®F)
— dg >~ — ii7—7
/ls—xj\/1_§2 n; S — X;

T
where X; = cos[(2j — 1)n/2n], 5 =cos(in/n), (j=1,2,...,n,i=0,1,....n), o=21,=1/2, L= =
A1 = 1, Eq. (54) subjected to the constraint (57) is approximated by the following system of » + 1 linear

g(x,p) = (56)

(58)

algebraic equations in n + 1 unknown Q(s;) (i =0,1,...,n):
1 -
- /1 ,R iy 5 Q T =Jm 9 .:1727..., 5 5
Z ._x,+ Zwsx,m() ). ] ’ (59)
Q(-1) =0, (60)

where we have omitted the parameter p in Q(5;, p), for simplicity.
The values of Q(s) at the collocation points 5, Q(s;), are therefore determined by solving the above
resulting algebraic system. In particular, of much interest is (1), which is directly related to or proportional
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to the field intensity factors. Once Q(1) is obtained, the dynamic stress intensity factor in the Laplace
transform domain, defined by

Ky (1) = lim /2n(x — a)7 (x,0,7) (61)

x—at

can be evaluated by

[~(ITH ) = Qp(1)70V/7a, (62)

for permeable surface cracks, or
~ e
Rinto) = {re() + L D) - (1)} via (63)
1

for impermeable surface cracks. Here Q(1) with a subscript stands for the solution to Eq. (54) corre-
sponding to the kernel with the same subscript.

Similar treatment can arrive at the electric-displacement intensity factors. It indicates that the stress and
the electric-displacement for each case exhibit a usual square-root singularity, but the corresponding
intensity factors have different relationships of dependence. That is, the intensity factors of stress and
electric-displacement depend only on mechanical impact, not on electric impact for permeable cracks,
whereas the stress intensity factors depend not only on mechanical impact, but also on electric impact for
impermeable cracks. However, the electric-displacement intensity factors are independent of mechanical
impact for impermeable cracks. In effect, taking into account the fact that time ¢ does not appear in the
kernel Tp(s,x, p), application of the inverse Laplace transform to Eq. (44) yields an equation in time do-
main, and so we have

KP(t) = —fo(t)2p(1)Dyv/na, (64)

where Qp(1) is the solutions relating to the equation without 7. Note that impact loadings here refer only to
those acting on the crack faces. Owing to the coupling feature between clastic and electric fields in a pie-
zoelectric material, a mechanical impact acting on the crack faces may be produced by a remote electric
excitation, and similarly an electric impact on the crack faces may be caused by a remote mechanical
excitation.

In analyzing the stability of a crack in a piezoelectric material, there exist some fracture criteria in theory.
Energy release rate according to the classical definition may give rise to negative values for certain com-
bined electromechanical loadings, which lacks clear physical interpretation, while strain energy release rate
(SERR) presented by Park and Sun (1995) seems to be a suitable fracture criterion for a cracked piezo-
electric material since theoretical prediction based on this criterion agrees basically with the experimental
data given in Park and Sun (1995). In the present study, the dynamic SERR

1 /9
G(t) = girr(% % / Tiy(l’, d/2,0)Aw(o — r,t)dr (65)
- 0
r being the distance from the crack tip, is adopted. From the above-obtained results, for the case of
fu(t) = f(2), a direct evaluation can derive dynamic SERR in the present study as

(10)*ma

(1) ="

K (0)k (¢) (66)

for permeable and impermeable cracks, where £7(7) and 7(¢) represent the inverse Laplace transforms of
k*(p) and k7(p), given by
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F(p) = (1) for the permeable case, (67)
Tl (1) + Du(2(1) — 2p(1))  for the impermeable case,
and
~ +Qp(1)  for the permeable case,
y _ 44
kp) = D2 0y(1)  for the impermeable case, (68)
44

where Dm = 615D0/811’L'0.

5. Results and discussions

In this section, numerical results for dynamic SERRs will be presented based on the above-obtained
results. For this purpose, a numerical inversion of the Laplace transform (Crump, 1976) is adopted to
determine £°(¢) and k7 (¢), and then dynamic SERRs. Numerical computations are carried out for a PZT-5H
layer with two surface cracks. The relevant material constants are cf, = 3.53 x 10'° N/m?, ¢;5 = 17.0 C/m?,
e = 151 x 1071 C/Vm, G, = 5.0 N/m (Pak, 1990). For simplicity, impact functions f,,(¢) and f,(¢) are
chosen to be the Heaviside unit step function H(¢), which is frequently used in the study of fracture
mechanics.

First, the effects of the material properties on the dynamic stress intensity factors are examined. From
(63), along with Eqgs. (43) and (44), it can be concluded that the normalized stress intensity factor k*(¢) as a
function of the normalized time ¢¢/a is independent of the material properties for impermeable cracks if
treating ejsDp/e1179 as a single independent parameter D,, = e;sDy/e1179. However, this is not true for
permeable cracks. For latter, k. = ejs/clen has a strong influence on the dynamic stress intensity factors.
Figs. 2 and 3 display variation of the normalized dynamic stress intensity factor £7(¢) against the normalized
time c¢,¢/a with h/a = 2.5, respectively, for permeable surface cracks. For comparison, the corresponding
results for a purely elastic medium, which may be treated as the results neglecting the piezoelectric constant
eys, are plotted in these figures. As seen from Figs. 2 and 3, a dynamic overshoot is very apparent. For a
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Fig. 2. k*(t) vs ¢st/a with d/a =5, 8 and h/a = 2 for a cracked PZT-5H layer.



3204 X.-F. Li, K. Y. Lee | International Journal of Solids and Structures 41 (2004) 3193-3209

1.5 ‘ ‘
d/a=5 d/a=8
’ ’%\‘/,\ S~ P
1.0 e — A N Y N )/ /:
e o> - i
_ , 4 > / / N \Q/
K= /
l-'x /
0.5
h/a=5 — PZT-5H
——--e;=0
0.0
0 2 4 6 8 10 12 14
cl/a

Fig. 3. k*(¢) vs ¢st/a with d/a =5, 8 and h/a =5 for a cracked PZT-5H layer.

purely elastic medium, as expected, a dynamic overshoot occurs exactly at c,t/a = 2, since the waves
generated at the crack faces near the crack tip are reflected through the surface x = 0, and arrive at again
the crack tip, taking the normalized time c¢,¢/a = 2. Owing to the influence of k., a dynamic overshoot
occurs later slightly than a purely elastic medium, and the magnitude is intensified or weakened depending
upon //a. Also expected is that the response curve of k*(¢) for d/a = 5 is the same as that for d/a = 8 before
the arrival of the wave-fronts generated at the crack in y < 0. After the arrival of these wave-fronts, the
dynamic interaction of two cracks takes place. For example, it takes time ¢,¢/a = 5 for the wave-fronts,
which weaken the stress intensity factors, to travel the crack tip in y > 0 for d/a=5; so k*(¢t) drops
immediately at ¢,;¢/a = 5. As time is large enough, the effect of %, is seen to be very slight and negligible, in
accordance with the fact that the static stress intensity factors are independent of material properties
including k,. Therefore, k. causes the delay of response of £7(¢), and the peaks are intensified or weakened
depending on #/a.

Figs. 4-6 show the dynamic SERR normalized by (ty)’na/2G.,, denoted as G°(¢), against c¢,//a with
hja=2,5,8, for three different distances between two cracks d/a =2,5,8, respectively, for permeable
cracks. In the following calculations, 7 and a are taken as 4.2 x 10® N/m? and 0.01 m. By comparison, it is
found that the curves of G°(¢) in Fig. 4 decreases more rapidly in a small range after c¢,¢/a = 2 than those in
Figs. 5 and 6. This is due to the dynamic interaction of two cracks. The reason is that for d/a = 2, it takes
about ¢ t/a = 2 for the waves generated at the crack in y < 0, which weaken the magnitude of G°(¢), to
travel the crack tip in y > 0, while for d/a = 5 or 8, the waves generated at the crack in y < 0 do not reach
the crack tip in y > 0 when ¢,¢/a = 2; so the curves of G°(¢) in Figs. 5 and 6 look like the same before
¢st/a < 5. The dynamic interaction of two cracks with the free boundaries is also observed in Figs. 4-6.
From these figures, it is seen that the curves of G°(¢) for #/a = 5 are almost the same as those for 4/a = 8
before ¢,t/a = 8, and they deviate clearly away after ¢;¢/a = 10. This is because that for #/a = 5, the wave-
fronts reflected through the layer surface x = & reach again the crack tip, taking time ¢;¢/a = 8, and the
second reflected waves through the layer surface x = 0 reach the crack tip, taking time c¢,¢/a = 10. Fur-
thermore, from Fig. 6 we find that the response curves of G°(¢) starting from the origin, rise rapidly,
arriving at the first peak at about ¢,z/a = 2.3, and then oscillate due to the superposition of the reflected
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Fig. 5. Variation of G°(¢) against ¢,t/a with d/a =5 and h/a = 2, 5, 8 under the permeable assumption.

waves through the layer surfaces and the scattering waves by two cracks, similar to Figs. 2 and 3. For
example, for d/a = 8, the curves of G°(¢) in Fig. 6 deviate slightly in a small region after ¢,t/a = 4 owing to
the influence of k., and fall down immediately at ¢,#/a = 8 with the arrival of the generated waves at the
other crack. After a small period of time, the scattering waves are generated and intensify the magnitude of
G°(1); so G°(t) is seen to climb the second peak.

From the above, in addition to the geometric parameters, k, has a strong influence on G°(¢) for per-
meable cracks, while electric impacts at the crack faces has no any influence of G°(7). However, for
impermeable cracks, electric impacts have a pronounced contribution in G°(¢). For different electric im-
pacts, variation of G°(¢) against c,¢/a is plotted with 2/a = 5and d/a = 2, 5,8, in Figs. 7-9. As compared to
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Fig. 6. Variation of G°(¢) against ¢,¢/a with d/a = 8 and #/a = 2, 5, 8 under the permeable assumption.

Fig. 7. Variation of G°(f) against ¢,t/a with d/a =2, h/a =5, D,, = 0.5, 0, —0.5 under the impermeable assumption.

permeable cracks, similar trends are observed in these figures. In particular, the curves of G°(¢) rise in a
straight line at the early stage of action of impacts, which agrees with the result for a piezoelectric material
with a semi-infinite crack (Li, 2001), since in this stage, the reflected waves through x = 4 and generated
waves at the other crack do not arrive at the crack tip, and all the contributions in G°(¢) near the crack tip
arises from the waves generated at the crack itself and reflected through x = 0. In contrast to G°(¢) for
permeable cracks, for impermeable cracks G°(¢) has a dynamic overshoot at exact time c,/a = 2 when
h/a > 2 and d/a > 2. Moreover, the peak values decrease gradually with an increase of the number of
reflected waves and scattering waves, and G°(¢) approaches the corresponding static value as time tends to
infinity. On the other hand, G°(f) becomes greater or lesser depending upon positive or negative electric
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Fig. 8. Variation of G°(¢) against ¢,t/a with d/a =5, h/a =5, D,, = 0.5, 0, —0.5 under the impermeable assumption.
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Fig. 9. Variation of G°(¢) against ¢,t/a with d/a =8, h/a =5, D,, = 0.5, 0, —0.5 under the impermeable assumption.

impacts, which indicates that positive electric impacts promote crack growth, and negative electric impacts
hinder crack growth, in accordance with the static analysis and experimental phenomena (Park and Sun,

1995). Additionally, it should be noted that the response curves of G°(¢) for D,, = —0.5 are flatter than
those for D,, = 0,0.5. In effect, it can be concluded from (68) that G°(¢) = 0 for D,, = —1, which reveals that
the strain vanishes, and of course the cracks do not propagate in this case. (Fig. 10)
Under a positive electric displacement, the effect of the layer thickness on the normalized SERR G°(¢) for
two impermeable surface cracks spaced by a fixed distance is illustrated in Fig. 10. By inspection, it is found
from Fig. 10 that for two surface cracks spaced by a fixed distance, the transient response is independent of

the thickness of the piezoelectric layer during the early stage of the action of impact, and relies on the

thickness after a period of time.
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Fig. 10. Response of G°(¢) under D,, = 0.5 for different thicknesses under the impermeable assumption.

6. Conclusions

The transient problem involving two surface cracks in a piezoelectric ceramic layer is analyzed under the
action of antiplane mechanical and inplane electric impacts. Using integral transform techniques, the mixed
boundary value problem is converted into singular integral equations. Dynamic field intensity factors in the
Laplace transform domain are obtained. By solving numerically the resulting singular integral equations
and performing numerically the inverse Laplace transform, the dynamic stress intensity factor and strain
energy release rate are presented graphically to show the effects of the geometric parameters and the
material properties. The dynamic interaction of two cracks, and cracks with free boundaries are analyzed
and explained in detail.
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